Part Number Hot Search : 
BZG03C33 1000G 223J630 31040 20100CT L128DN 03952 AD735
Product Description
Full Text Search
 

To Download IRGP430UD2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c-633 IRGP430UD2 i nsulated gate bipolar transistor with ultrafast soft recovery diode features ? switching-loss rating includes all "tail" losses ? hexfred tm soft ultrafast diodes ? optimized for high operating frequency (over 5khz) see fig. 1 for current vs. frequency curve e g n - c h a n n e l c v ces = 500v v ce(sat) 3.0v @v ge = 15v, i c = 15a parameter min. typ. max. units r q jc junction-to-case - igbt ? ? 1.2 r q jc junction-to-case - diode ? ? 2.5 c/w r q cs case-to-sink, flat, greased surface ? 0.24 ? r q ja junction-to-ambient, typical socket mount ? ? 40 wt weight ? 6 (0.21) ? g (oz) thermal resistance description co-packaged igbts are a natural extension of international rectifier's well known igbt line. they provide the convenience of an igbt and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, motor control, ups and power supply applications. t o - 2 4 7 a c ultrafast copack igbt pd - 9.1063 parameter max. units v ces collector-to-emitter voltage 500 v i c @ t c = 25c continuous collector current 25 i c @ t c = 100c continuous collector current 15 i cm pulsed collector current 50 a i lm clamped inductive load current 50 i f @ t c = 100c diode continuous forward current 12 i fm diode maximum forward current 50 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 100 w p d @ t c = 100c maximum power dissipation 42 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1 n?m) absolute maximum ratings revision 1
c-634 parameter min. typ. max. units conditions q g total gate charge (turn-on) ? 31 47 i c = 15a q ge gate - emitter charge (turn-on) ? 6.2 9.2 nc v cc = 400v q gc gate - collector charge (turn-on) ? 12 19 see fig. 8 t d(on) turn-on delay time ? 73 ? t j = 25c t r rise time ? 72 ? ns i c = 15a, v cc = 400v t d(off) turn-off delay time ? 120 180 v ge = 15v, r g = 23 w t f fall time ? 100 150 energy losses include "tail" and e on turn-on switching loss ? 0.7 ? diode reverse recovery. e off turn-off switching loss ? 0.4 ? mj see fig. 9, 10, 11, 18 e ts total switching loss ? 1.1 1.7 t d(on) turn-on delay time ? 77 ? t j = 150c, see fig. 9, 10, 11, 18 t r rise time ? 75 ? ns i c = 15a, v cc = 400v t d(off) turn-off delay time ? 200 ? v ge = 15v, r g = 23 w t f fall time ? 190 ? energy losses include "tail" and e ts total switching loss ? 1.5 ? mj diode reverse recovery. l e internal emitter inductance ? 13 ? nh measured 5mm from package c ies input capacitance ? 660 ? v ge = 0v c oes output capacitance ? 110 ? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ? 12 ? ? = 1.0mhz t rr diode reverse recovery time ? 42 60 ns t j = 25c see fig. ? 80 120 t j = 125c 14 i f = 12a i rr diode peak reverse recovery current ? 3.5 6.0 a t j = 25c see fig. ? 5.6 10 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ? 80 180 nc t j = 25c see fig. ? 220 600 t j = 125c 16 di/dt = 200a/s di (rec)m /dt diode peak rate of fall of recovery ? 180 ? a/s t j = 25c see fig. during t b ? 116 ? t j = 125c 17 parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 500 ? ? v v ge = 0v, i c = 250a d v (br)ces / d t j temp. coeff. of breakdown voltage ? 0.46 ? v/c v ge = 0v , i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ? 2.3 3.0 i c = 15a v ge = 15v ? 2.8 ? v i c = 25a see fig. 2, 5 ? 2.6 ? i c = 15a, t j = 150c v ge(th) gate threshold voltage 3.0 ? 5.5 v ce = v ge , i c = 250a d v ge(th) / d t j temp. coeff. of threshold voltage ? -11 ? mv/c v ce = v ge , i c = 250a g fe forward transconductance 2.3 8.1 ? s v ce = 100v, i c = 15a i ces zero gate voltage collector current ? ? 250 a v ge = 0v, v ce = 500v ? ? 2500 v ge = 0v, v ce = 500v, t j = 150c v fm diode forward voltage drop ? 1.4 1.7 v i c = 12a see fig. 13 ? 1.3 1.6 i c = 12a, t j = 150c i ges gate-to-emitter leakage current ? ? 100 na v ge = 20v IRGP430UD2 pulse width 80s; duty factor 0.1%. v cc =80%(v ces ), v ge =20v, l=10h, r g = 23 w , ( see fig. 19 ) pulse width 5.0s, single shot. switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified) repetitive rating; v ge =20v, pulse width limited by max. junction temperature. ( see fig. 20 ) notes:
c-635 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics IRGP430UD2 0 4 8 12 16 20 0.1 1 10 100 f , f r e q u e n c y ( k h z ) l o a d c u r r e n t ( a ) a 6 0 % o f r a t e d v o l t a g e d u t y c y c l e : 5 0 % t = 1 2 5 c t = 9 0 c g a t e d r i v e a s s p e c i f i e d t u r n - o n l o s s e s i n c l u d e e f f e c t s o f r e v e r s e r e c o v e r y s i n k j p o w e r d i s s i p a t i o n = 2 4 w 1 1 0 1 0 0 1 1 0 c e c i , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) v , c o l l e c t o r - t o - e m i t t e r v o l t a g e ( v ) t = 1 5 0 c t = 2 5 c j j v = 1 5 v 2 0 s p u l s e w i d t h ? g e 0 . 1 1 1 0 1 0 0 1 0 0 0 5 1 0 1 5 2 0 c i , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) v , g a t e - t o - e m i t t e r v o l t a g e ( v ) g e t = 2 5 c t = 1 5 0 c j j v = 1 0 0 v 5 s p u l s e w i d t h ? c c
c-636 fig. 5 - collector-to-emitter voltage vs. case temperature fig. 4 - maximum collector current vs. case temperature IRGP430UD2 fig. 6 - maximum igbt effective transient thermal impedance, junction-to-case 0 5 1 0 1 5 2 0 2 5 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 m a x i m u m d c c o l l e c t o r c u r r e n t ( a ) t , c a s e t e m p e r a t u r e ( c ) c v = 1 5 v ? g e 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 - 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 t , c a s e t e m p e r a t u r e ( c ) c c e v , c o l l e c t o r - t o - e m i t t e r v o l t a g e ( v ) ? v = 1 5 v ? 8 0 s p u l s e w i d t h g e i = 3 0 a i = 1 5 a i = 7 . 5 a c c c 0 . 0 1 0 . 1 1 1 0 0 . 0 0 0 0 1 0 . 0 0 0 1 0 . 0 0 1 0 . 0 1 0 . 1 1 1 0 t , r e c t a n g u l a r p u l s e d u r a t i o n ( s e c ) 1 t h j c d = 0 . 5 0 0 . 0 1 0 . 0 2 0 . 0 5 0 . 1 0 0 . 2 0 s i n g l e p u l s e ( t h e r m a l r e s p o n s e ) t h e r m a l r e s p o n s e ( z ) p t 2 1 t d m n o t e s : ? 1 . d u t y f a c t o r d = t / t 2 . p e a k t = p x z + t ? ? ? ? 1 2 j d m t h j c c ? ? ?
c-637 IRGP430UD2 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. case temperature 1.03 1.06 1.09 1.12 1.15 0 10 20 30 40 50 60 g t o t a l s w i t c h i n g l o s s e s ( m j ) r , g a t e r e s i s t a n c e ( w ) a ? v = 4 0 0 v ? v = 1 5 v ? t = 2 5 c ? i = 1 5 a c c g e c c 0.1 1 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 c t , c a s e t e m p e r a t u r e ( c ) t o t a l s w i t c h i n g l o s s e s ( m j ) a r = 2 3 w v = 1 5 v v = 4 0 0 v g g e c c i = 3 0 a i = 1 5 a c c i = 7 . 5 a c 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 1 0 1 0 0 c e c , c a p a c i t a n c e ( p f ) v , c o l l e c t o r - t o - e m i t t e r v o l t a g e ( v ) v = 0 v , f = 1 m h z c = c + c , c s h o r t e d c = c c = c + c g e i e s g e g c c e r e s g c o e s c e g c c ? i e s c ? r e s c ? o e s 0 4 8 1 2 1 6 2 0 0 1 0 2 0 3 0 4 0 g e v , g a t e - t o - e m i t t e r v o l t a g e ( v ) q , t o t a l g a t e c h a r g e ( n c ) g ? v = 4 0 0 v ? i = 1 5 a c e c
c-638 fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current IRGP430UD2 0.0 1.0 2.0 3.0 4.0 5.0 0 10 20 30 40 c t o t a l s w i t c h i n g l o s s e s ( m j ) i , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) a ? r = 2 3 w ? t = 1 5 0 c ? v = 4 0 0 v ? v ? = 1 5 v g c c c g e 1 10 100 1 10 100 1000 c c e i , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) s a f e o p e r a t i n g a r e a ? ? v = 2 0 v ? t = 1 2 5 c g e j v , c o l l e c t o r - t o - e m i t t e r v o l t a g e ( v ) a 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 f m f i n s t a n t a n e o u s f o r w a r d c u r r e n t - i ( a ) f o r w a r d v o l t a g e d r o p - v ( v ) t = 1 5 0 c t = 1 2 5 c t = 2 5 c j j j
c-639 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt IRGP430UD2 10 100 1000 10000 100 1000 f d i / d t - ( a / s ) d i ( r e c ) m / d t - ( a / s ) i = 1 2 a i = 2 4 a i = 6 . 0 a f f f v = 2 0 0 v t = 1 2 5 c t = 2 5 c r j j 0 40 80 120 160 100 1000 f d i / d t - ( a / s ) t - ( n s ) r r i = 2 4 a i = 1 2 a i = 6 . 0 a f f f v = 2 0 0 v t = 1 2 5 c t = 2 5 c r j j 1 10 100 100 1000 f d i / d t - ( a / s ) i - ( a ) i r r m i = 6 . 0 a i = 1 2 a i = 2 4 a f f f v = 2 0 0 v t = 1 2 5 c t = 2 5 c r j j 0 200 400 600 100 1000 f d i / d t - ( a / s ) r r q - ( n c ) i = 6 . 0 a i = 1 2 a i = 2 4 a v = 2 0 0 v t = 1 2 5 c t = 2 5 c r j j f f f
c-640 IRGP430UD2 t 1 i c v c e t 1 t 2 9 0 % i c 1 0 % v c e t d ( o f f ) t f i c 5 % i c t 1 + 5 s v c e i c d t 9 0 % v g e + v g e e o f f = fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f s a m e t y p e d e v i c e a s d . u . t . d . u . t . 4 3 0 f 8 0 % o f v c e fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f v c e i e d t t 2 t 1 5 % v c e i c i p k v c c 1 0 % i c v c e t 1 t 2 d u t v o l t a g e a n d c u r r e n t g a t e v o l t a g e d . u . t . + v g 1 0 % + v g 9 0 % i c t r t d ( o n ) d i o d e r e v e r s e r e c o v e r y e n e r g y t x e o n = e r e c = t 4 t 3 v d i d d t t 4 t 3 d i o d e r e c o v e r y w a v e f o r m s i c v p k 1 0 % v c c i r r 1 0 % i r r v c c t r r q r r = t r r t x i d d t fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr refer to section d for the following: appendix b: section d - page d-4 fig. 18e - macro waveforms for test circuit fig. 18a fig. 19 - clamped inductive load test circuit fig. 20 - pulsed collector current test circuit package outline 3 - jedec outline to-247ac section d - page d-13


▲Up To Search▲   

 
Price & Availability of IRGP430UD2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X